الخميس، 14 مارس 2013

Dual Code

3.2 DUAL CODE

In general, the polynomial x n + 1 may be factored as
x n + 1 = g(x)h(x)                                              (3.12)
Where g(x) denotes the generator polynomial for the (n , k) cyclic code and h(x) denotes the parity polynomial that has degree k. The latter may be used to generate the dual code.
For this purpose, we define the reciprocal polynomial of h(x) as
x k h(x -1) = x k (x -k + hk-1 x -k+1+ hk-2 x - k+2 + . . . + h1 x -1 + 1)
                     = 1+hk-1 x1 +hk-2 x 2 + . . . + h1 x k-1 + x k                               (3.13)
The reciprocal polynomial is also a factor of x n + 1. Hence x k h(x -1) is the
generator polynomial of an (n, n- k) cyclic code. This cyclic code is the dual code to the (n , k) code generated from g(x).

Example 3.2

 Let us consider the dual code to the (7, 4) cyclic code generated in Example 3.1. This dual code is a (7, 3) cyclic code associated with the parity polynomial  
h1(x) = (x +1) (x 3 +x+1)
        = x 4 + x 3 + x 2 +1


The reciprocal polynomial is
   x 4 h1(x -1) =1+ x+ x 2 + x 4
This polynomial generates the (7, 3) dual code given in Table 3.2

  Information bits
                 Code words
    x 2      x 1      x 0 
  x 6   x 5    x 4    x 3    x 2    x 1    x0
    0        0        0
    0        0        1
    0        1        0
    0        1        1
    1        0        0
    1        0        1
    1        1        0
    1        1        1
  0      0      0      0      0      0      0
  0      0      1      0      1      1      1
  0      1      0      1      1      1      0
  0      1      1      1      0      0      1
  1      0      1      1      1      0      0
  1      0      0      1      0      1      1    
  1      1      1      0      0      1      0
  1      1      0      0      1      0      1


Table 3.2 (7, 3) Dual Code With Polynomial x4 h1(x -1) = 1+ x + x 2 +x 4


ليست هناك تعليقات:

إرسال تعليق